GNSS: Mitigating the Threats of Interference, Jamming & Spoofing

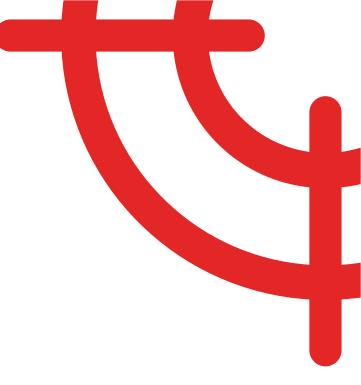
Eddie Milne, Technical Manager

30, May, 2018

Agenda

Introduction and Overview

Overview of interference, jamming and spoofing and their effects on GNSS reliability and accuracy


Real World Examples

Real world examples showing the impact of GNSS denial

Mitigation

Exploring how to mitigate the threats by looking at the technology available

Introduction and Overview

Overview of interference, jamming and spoofing and their effects on GNSS reliability and accuracy

Terminology

- Interference is the unintentional transmission of signals stopping the reception of the GNSS signals. Can be In-band or Out-Band interference.
- Jamming is the intentional interference of the GNSS signal reception to deny the receiver GNSS Signals
- Spoofing is the practice of tricking a GNSS receiver into reporting an incorrect position or time.

Interference - In-band

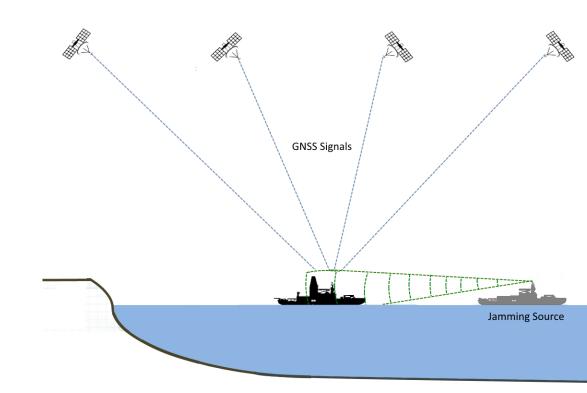
- Typically caused by GNSS receivers themselves!
- Re-radiate the local oscillator from the receiver
 - Faulty antenna
 - Breakdown in shielding of coaxial cable
- Continuity lost between antenna and receiver
- Coaxial cable acts as antenna for local oscillator
 - Picked up by other GNSS receivers causing loss of lock
- Can be caused by
 - Water ingress and corrosion
 - In-correctly terminated cables
- Symptoms can be intermittent

Interference - In-band Systems

- General navigation receivers
 - Ships GMDSS equipment e.g. Furuno, Thrane & Thrane, Leica, JRC etc.
- Communications domes using GNSS receivers for orientation
 - Inmarsat, (B, C and BGAN) from Thrane & Thrane, NERA and Furuno etc., KU and C Band V-Sat, and TV systems from Caprock, Schlumberger-DMS etc.
- Doppler speed logs such as SatLog etc.
- Automatic Identification Systems (AIS)
- GPS Heading Sensors
- Plotter systems or ECDIS with integrated GNSS
- High Accuracy commercial augmentation services
- GNSS receivers integrated into a vessel DP system
- Survey & seismic receivers inc. Heading Sensors and Tailbuoy Tracking
- Precision timing equipment used to time survey systems

Interference - Out-band

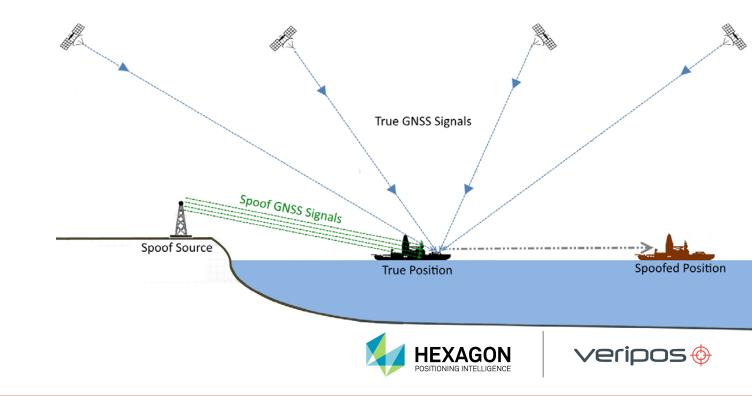
- Interferer outside GNSS band cause interference
- Typically a stronger signal swamps the antenna & drives the antenna LNA into saturation thus blocking the GNSS signals
- This can be cause by several devices:
 - Microwave data links
 - Radar systems
 - TV antenna amplifiers or transmitters
 - Communications Systems
 - Telemetry Systems (data or video)
- Systematically test systems to find cause of interference (or change vessel heading)



7

Jamming

- Intentional jamming of GNSS signals
- Technology commercially available to anyone
- Generally In-band Interference
- Effective range depends on power of transmitter
 - Range from metres to kilometres
- Can be Land, Sea or Air based



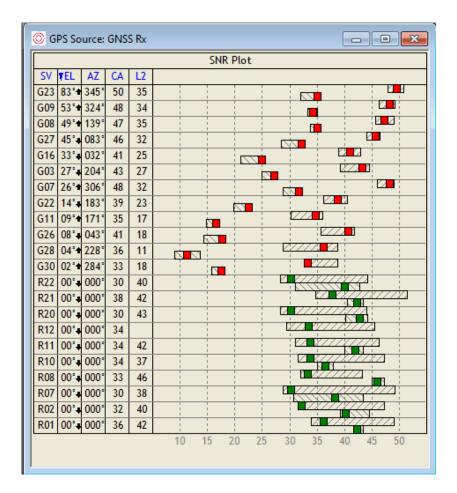
Spoofing

- Using false GNSS signal to supplant real GNSS signal
- Attacker broadcasts signals with same structure and frequency as GNSS signals
- The spoofed message is changed so receiver calculates incorrect position or time
- Spoofing GNSS signals is complicated and requires sophisticated equipment

Real World Examples

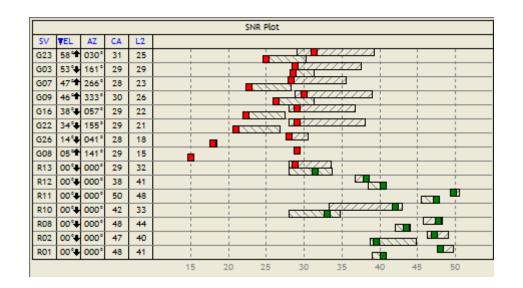
=

Real world examples showing the impact of GNSS denial



Unintentional In-Band Interference - August 2017

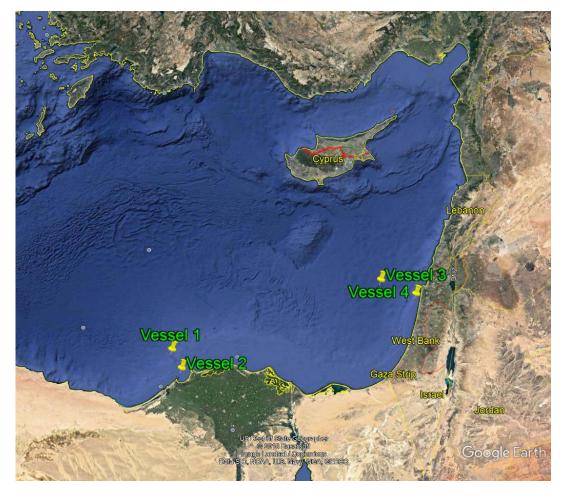
- Incident 24th August 2017
- All GNSS Systems onboard vessel lost positioning Except 1?
 - "GPS1, GPS2 and GPS4 dropped Out. GPS3 did not drop out. GPS1 was off only momentarily. GPS2 and GPS4 were in and out for about 1 hour. Satellites would be in and out."
- When issue recurred shutdown working system and other systems recovered.
- Issue found to be triggered by faulty inline connector causing GNSS reradiation



veripos 💮

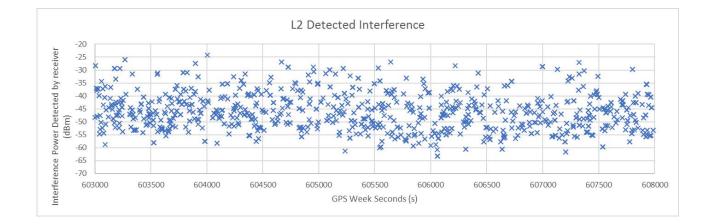
Suspect Jamming - October 2016

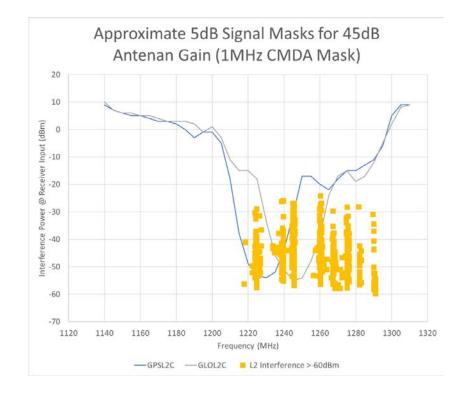
- Incident Persian Gulf 26th October 2016
- 6 vessels reported issue with Positioning
- 40Km Range
- Lasted approximately 30 minutes and returned 16 hours later
- All GPS signals lost on all systems
- Source Unknown



Suspect Jamming - Ongoing

- Incident Eastern Mediterranean
- First report 18th March has continued for over 70 days
- Multiple vessels affected
- 250 Nautical Mile range
- Duration ranged from a few minutes to hours
- Affects ranged from reduced usable satellites on specific constellations to a complete loss of satellite tracking (GNSS and L-Band Corrections)
- Source Unknown
- Result vessels were unable to operate using GNSS alone

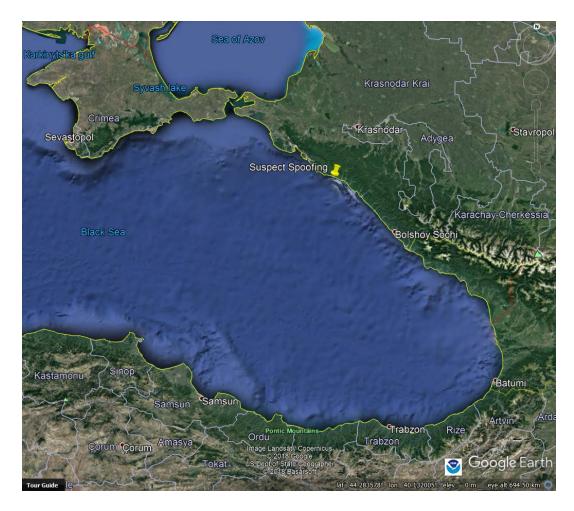




veripos 🚸

Suspect Jamming- Ongoing - Data Analysis

- Severity of interference observed varies greatly
- One data set analysed observed:
 - Strong interference on L2 signals
 - Varying by 40dB over time



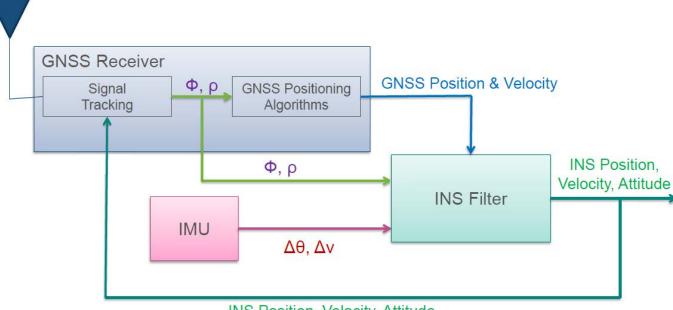
Suspect Spoofing

- Incident reported by vessels operating in the Black Sea
- Between 22nd and 24th June 2017 -
 - However some reports state it was still ongoing into October 2017
- Reported anomalies with their GPS-derived positions
- Reported to be located at an airport
- Receivers affected appear to be Single Frequency GPS Only with Standalone positioning
- Debate whether this issue is Spoofing or GNSS re-radiation.

Constellation Issue - GLONASS Event 2014

- Occurred on 01 April 2014, just after 21:00 UTC
- Each satellite reported 'Illegal Ephemeris' or 'Failure (URE>75m)'
- Entire constellation un-usable
- Resulted in no GLONASS and in some cases a problem with the position computation
- GLONASS only solution displayed low residuals but horizontal position was 50km out
- Compared ephemeris received with the previously received ephemeris was in the order of 100,000m difference

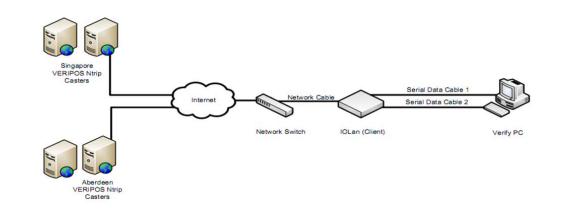
Mitigation


Exploring how to mitigate the threats by looking at the technology available

Mitigation - GNSS / INS integration

- Can continue to provide position through short periods (few minutes) of GNSS denial through Interference or Jamming
- Can detect and remove large jumps in measurements and position from the GNSS receiver during Spoofing attack
- However longer periods of GNSS denial shall still experience exponential drifting and spoofing is still achievable using small incremental changes

INS Position, Velocity, Attitude

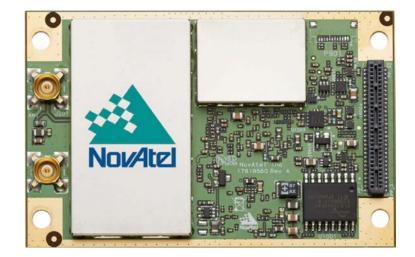


Mitigation - Augmentation Services

- Augmentation signals provide an integrity check on the GNSS measurements
- During Glonass Event 2014 standalone positions shifted 50km where augmented positions rejected Glonass constellation

Interference / Jamming

- Diverse Communications systems L-Band and NTRIP
 - Utilising different communications systems to receive Augmentation Services
 - L-Band Demodulator and NTRIP Correction sources
 - Inmarsat V-SAT Iridium



Mitigation - New Generation GNSS receivers

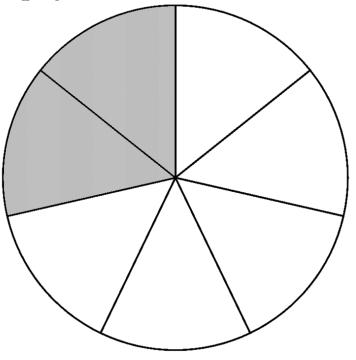
- Utilising Multiple Constellations and Frequencies -
 - More satellites in computation with diverse frequency bands and modulation techniques
- Improved tracking capabilities and interference rejection
- Improved resilience against Spoofing Multi Constellation & Frequencies
- Have been deployed in strong interference environment and shown improved performance over legacy equipment

Mitigation - Interference Toolkits

- Interference Toolkits available on certain New Generation GNSS receivers
- Ability to detect, display, profile and mitigate interference

• Notch Filters

Bandpass Filters


• Cannot mitigate interference on the GNSS frequency as required signal would also be filtered

Mitigation - Anti-jam Antenna

- CRPA (Controlled Reception Pattern Antennas)
- Mitigates In-Band and Out-Band Interference
- Creates nulls in the antenna gain pattern in the direction of jammers
- Providing significant anti-jam protection even in dynamic multi-jammer scenarios
- Compatible with legacy GPS receivers

Summary

- Unintentional and international interference an increasing risk
- Recent Events show increasing duration and severity of suspect jamming
- Local interference still causing issues
- Utilising multiple constellations, frequencies and diverse communication links improve resilience
- New technology currently available to mitigate Interference, Spoofing and Jamming

veripos

a sure and